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Introduction

Symmetries can forbid the inclusion of mass terms.
Chiral symmetries = massless fermions.

Can interactions that preserve these symmetries
generate fermion masses dynamically ?

Conventionally by Spontaneous  Can we achieve fermion mass

Symmetry Breaking sigqaled generation without a chiral
through a non-zero chiral condeniaio

condensate

We have a lattice model in 3D in
which a 4 fermion interaction
makes this is possible



“Our Lattice model

Staggered fermion action for two flavors *and * in 3D : ey
S Grassmann
= 1 1 2 2 fields.
Ll Notice the
similarity to the

Dirac Action !

where 1
’ h Da:,y o § ;{5m,y+’&“ T 5m,y—?}n@,$
8
Me= L; Mox = - 1)Xl;n3ax =L -

Four-fermion Interaction : - —1 1 —2 9

In addition to the usual discrete space-time symmetries*, the action has a

continuous SU(4) symmetry.
Maarten F.L. Golterman and Jan Smit. Selfenergy and Flavor Interpretation of Staggered Fermions. Nucl.Phys., B245:61, 1984.
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For four-fermion interactions,

v

we expect”
Theoretical
Use Monte- ' 5reuments to show
Carlo
— m%()
i =0 =
We get : ==Y

*NPB388, 1992, page 243 Bock, De and Smit
*NPB344, 1990, page 207 Bock et. al., 4
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_ *The Fermion Bag approach
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— f[d@dw]e—sﬂ 1;[ [1 _l_U Ewi@b_iwi} Fermion Bag configuration

Assigning m,= 0 or1ito

:f[d?,_[)dw]e—So H (lexwiwiwi)mx each lattice site

£L =0.1 2
m=0, * m,=o0 = free sites
e m,=1=monomers

*S Chandrasekharan and Anyi Li. The generalized fermion-bag approach. Procd of Sc., LATTICE2011:058, 2011.
Shailesh Chandrasekharan. The Fermion bag approach to lattice field theories. PRD 82:025007, 2010. 5
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Weak coupling limit
Z = Det[D] Y U*Det(D7')Det(D7?)

Strong coupling limit

Z =Y U*Det(W,)Det(W )

{My}

{Mg}

—————
1

D~ 1 kxk matrix of
propagators.

(V-k) x (V-k) matrix

----------------------------

* (Can show that each determinant can be expressed as a square of

smaller determinants.



Extracting the condensate X

P —

Y is usually 2= 11111D lim (¢))
defined as: MRV e

With massless fermions, we can instead compute the bosonic susceptibility :

-2y L)
XY

v
= EZZ + constant

¥ = const. = condensate = 0



/ Fermionic correlator

— ; .
(Y1, é)ZEDet(W)W Ly

» W can be written in terms of bags in block diagonal form.
» Can show that the correlator is zero unless x and y belong to the same bag.

W and W1 are block diagonal

Q- QOO QO .
1000001000 .
35893881 #4338
Y [TTT IR -
OO %, OO — -0
T oAL:
000 -00- QOO0 1t-- (@) @) C (0]
BRicasantiaiotis
0000000000 000 s S
T IYTIOeYeree

Need for a path of free sites connecting o & t for a non-zero
correlator G(x,y) !



e Bosonic correlator /
—r 1
(pLaplaploply = 7 Det(W1) Det(W)

Since, for a non-zero determinant,
Number of even sites = Number of odd sites

Can show that, '{’j 4

Det(W;) # 0 = Det(W,) =0 Bred
and Q@+

Det(W,) # 0 = Det(W,;) = 0 B LS INAP S AL
9 5
The two flavors ensure :

Need for a path of free sites connecting o & t for a non-zero correlator
G(o,t) !



e Small U - Irrelevant coupling
= massless fermions.

» Forvery large U
G(t) ~ e~ —x) InU _ ,-m(y—x)

= massive fermions.

* Exponential decay of all correlators
indicates a zero condensate at very
large U.
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m=0
>0
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e Phase Transition
Expectation %l:: {5)
from traditional
understanding

Ucq
m
).

We seem to observe

/‘-
m%()

2=l
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~—Preliminary results -

3.5

0.5

U=0.80
U=1.20
U=0.96

Have used Open
Science Grid (OSG) for
computations

¥ = const. =
condensate = (0

Near U, = 0.96,
x grows with L

Susceptibility saturates indicating a zero condensate
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* Susceptibility reaches a

maximum for intermediate U

* Then decreases and then
saturates.

Instead of

-~

Results contd.

Susceptibility 'chi’

8

=N

0
0

0.4 0.6 0.8 I I

2
Coupling constant 'U’

susceptibility vs coupling
U for cubical lattices of
length 8,12,16,20,24
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Evidence that Uc is a 2" order critical point
1
For a second order transition we expect : =l [ (U-U C)Lv]
I ' I ; I : I
0.25— —

chi/L p
O
|
#

B e
0.1 &

0.05 |- e B

0 , 1 : | . |

-2 -1 0 1
(U-Uc)LA(1/v)

1
Plotof x / LPvs (U — U,)Lv

Preliminary calc. of Critical exponents :

Errors too small ?

n=0.878(1), v=121(2),U,=0.958(2)

14
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Caveats

We do observe some rare large fluctuations in data for
large U. Are these statistically significant ?

Results using two very different Monte-Carlo
algorithms seem to give consistent results.

Considering the unconventional nature of the result,
we are trying to develop another algorithm that gives
results without fluctuations.
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Conclusions

We have found a lattice model in 3D, in which
fermions acquire a mass at large couplings, but
without a fermion bilinear condensate.

Possibly no spontaneous symmetry breaking ?

The transition from massless to massive phase seems

second order. If true, we could have an interesting 3D
continuum field theory.

Similar result in 4D could be exciting for particle
physics.
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Thank You
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/ Back up slides

Sy can be written as :

(]:be ]a}e %e %e) M g 0 f Llil']:;"”\
s ) N ) ) YL,

0 0 M 0 e

00 0M )

= Syinvariant under SU(4)

At ite, I 102 .00 S, invariant under SU
every site wxwxwxwx I (4)

Thus the SU(4) symmetry is preserved by the
interaction.
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